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Digitalization

To digitize
The process of converting analogue
to digital data

L B1

Digitalization
The process when an organization
digitizes central parts of its business

Digital transformation

The effect of digitalization on an
organization. New value chains and
services.
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Bild 2

LB1 Replace shutterstuck picture
Lukas Bach; 2018-09-16

LB2 Hvad er historien her?
Lukas Bach; 2018-09-16

AMR1 nye forretningsmodeller, papiravis til nettavis, rubrikka nnonser til finn.no
Anne Marthine Rustad; 2018-09-16



Digitalization leads to digital
business, digital transformation

. . . . digital transformation without . o .
D I g I ta I I Zat I O n digitization (of paper and processes) :lt?q.:.lre:.dlgltal business and
igitization

There is no digitalization and no

https://www.i-scoop.eu/digitization-digitalization-digital-transformation-disruption/

* Digitization
 "Digitization is creating a digital (bits and bytes) version of analog/physical things such as paper documents,
microfilm images, photographs, sounds and more. So, it’s simply converting and/or representing something

non-digital (other examples include signals, health records, location data, identity cards, etc.) into a digital
format which then can be used by a computing system for numerous possible reasons."

* Digitalization

* "Enabling, improving and/or transforming business operations and/or business functions and/or business
models/processes and/or activities, by leveraging digital technologies and a broader use and context of
digitized data, turned into actionable, knowledge, with a specific benefit in mind."

* Digital transformation

 "Digital transformation [...] is broader than digitalization as a way to move to digital business. @ SINTEF



[https://www.ibmbigdatahub.com/infographic/four-vs-big-data]
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Big data —the 5 "V"s

* Volume: the vast amount of data

* Velocity: the speed at which new data is generated and
the speed at which data moves around

* Value: the ability to use the data to generate value

* Veracity: the messiness or trustworthiness of the data

(9 SINTEF
* Variety: the different types of data we can now use



Big Data

[Toph Tucker, "Interactive graphic: How big is big data?",
https://www.bloomberg.com/graphics/2014-fix-this-big-data/, 2014]
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Big Data
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[Toph Tucker, "Interactive graphic: How big is big data?",
https://www.bloomberg.com/graphics/2014-fix-this-big-data/, 2014]
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Big Data

[Toph Tucker, "Interactive graphic: How big is big data?",
https://www.bloomberg.com/graphics/2014-fix-this-big-data/, 2014]
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[Toph Tucker, "Interactive graphic: How big is big data?",
https://www.bloomberg.com/graphics/2014-fix-this-big-data/, 2014]
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CPS, loT, loS

e Cyber-physical system (CPS)

* "Cyber-Physical Systems (CPS) comprise interacting digital, analog, physical, and human
components engineered for function through integrated physics and logic. [...]" [National
Institute of Standards and Technology (NIST), U.S. Department of Commerce]

* "Cyber-Physical Systems (CPS) are integrations of computation, networking, and physical
processes." [https://ptolemy.berkeley.edu/projects/cps/]

* Internet of things (loT)
* "Internet of things (loT) is the extension of Internet connectivity into physical devices and

everyday objects." [https://en.wikipedia.org/wiki/Internet_of things]

* Internet of Services (l0S) Soon, loT will transition into Internet of Service

S S lyengar and Jerry Miller, DEC 20 2018, 01:02AM IST | UPDATED: DEC 20 2018, 11:53AM IST

* Access to services available on the web @) SINTEF
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Cyber-Physical Systems - a Concept Map

S5ee authors and contributors.

http.'”l:'fbﬂ Ph\rsir.ilﬁﬂt!mi.org Economics in the m-—)
® - Emvironmentals in the Loop )
Humars in the Loop

Networked and jor Distributed

http://cyberphysicalsystems.org

(9 SINTEF



Framework for data-driven predictive maintenance

Where can concepts
like cyber-physical
systems (CPS),
internet of things
(10T), data mining
(DM) and internet of
services (10S) be used
for predictive
maintenance of
hydropower plants?

Maintenance
Actions and
Instructions

Hydro Turbines/
Generators

Generator

Key Performance Indicator (KP1) '

Maintenance
Maintenance h Decision-
Management making and
Scheduling

Wireless Data Collection Signal Pre-process

Networks
Denosing
Dat Acquisition

v
———

\ y

Feature Extraction
Time Domain
Time-Frequency Domain
Frequency Domain (FFT, DFT)

Wanele: Domain
(WT, WPT)

Principal Component Anslysis
(FCA)

—_—

Fault Prognosis

Amo-regressive Moving Averaging
[ARMA)

Match Marix Prediction

Fault Diagnosis

Support Suppost Machine (SVM)

Dam Mining (Dedsion Tree &
Associstion rales)

Arificial Newral Netwark (SOM &
SEE)

Statistical Maching

®NTNU

(» SINTEF
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Data mining

* Data mining

* "Process of discovering patterns in large data sets"
[https://en.wikipedia.org/wiki/Data_mining]

* Analyse large amount of data and generate new information

(9 SINTEF



Type of models (model classes)

Y
* Physical models (PM) = f(X1,X2)
= X1+ X2
 Stochastic models (SM)
Y
= f(X1,X2)
* Machine learning (ML) =7

13
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Model classes — Main differences

L e [ T

+ White-box model + General model + General model

+ Clear meaning of model + Takes uncertainty into + Large data sets

parameters account + Short-term predictions

- Problem-specific model + Requires a group

- Challenging if good consisting of comparable

model is not available Items

+ Identification of faults
+ Fault prediction and diagnosis

- - Often black-box model
- Parameter estimation

requires observations - Requirements of quality data

related to - Few examples on lifetime

lifetime/reliability prediction and reliability
14 estimation
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Model classes — Main differences

L e [ T

+ White-box model + General model + General model
+ Clear meaning of model + Takes uncertainty into + Large data sets

parameters account + Short-term predictions
- Problem-specific model + Requires a group + Identification of faults
i ble

aAgnosis

y data




Al is a crossroad .. and there are
of multiple fields.. several types of Al

Deep Learning

Machine Learning

Predictive analysis

Computer science
Planning, Scheduling, & Optimization

Mathematics

+ Logics Classification & Clustering

* Optimisation Information extracting  Natural Language Processing (NLP)

e A | i 1 epe .
nalysis Translation _ Artificial

« Probabilities Robotics

Intelligence

* Linear algebra Deep Learning (Al)
Speech
* Cognitive sciences Predictive analysis >' —
.« Expert Systems
* Domain expertise Deep Learning

Vision (9 SINTEF
Predictive analysis



Al - Machine learning — Deep learning

Artificial Intelligence (Al)
e A program that can sense, decide, act and

Artificial Intelligence (Al)

Machine learning adapt

Deep Machine Learning

learning * A way of achieving Al

e Algorithms whose performance improve as
they are exposed to more data

1950 1980 2010 Deep Learning
e Subset of machine learning

e Multi-layered neural networks learn from

vast amounts of data
21 (9 SINTEF
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Machine learning

All machine learning have a two step
approach:

1. Learning phase: Using input data to

identify parameters best describing task at
hand

2. Inference phase: Take learned parameters
as input to perform task




Main types of machine learning

Image credit: bigdata-madesimple.com
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PER ) LEAR 1 UNSUPERVISED LEARNING g REINFORCEMENT LEARNING
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* Trained to learn e Only given input e Learning through trial
mapping from input to e No "correct" answer and error with rewards
output provided and punishments

e Tagged training set  No tagged data e Hybrid between

supervised and
unsupervised

23 (9 SINTEF
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SR2 I'm thinking something along these lines. Reinforcement learning can then be illustrated similarly to unsupervised, but with a
reward whenever the ducks ends up in the same category, and e.g. get ducklings (delayed reward). Health example could be
e.g. tumor/no tumor classification (supervised), tumor type clustering (unsupervised), and how will the tumor react to

treatment? (Re-inforcement learning, delayed reward)
Signe Riemer-Sgrensen; 2018-09-21



Digital twin

 Digital twin
» "adigital replica of a living or non-living physical entity" inttps://en.wikipedia.org/wiki/Digital_twin]

* Properties:
* "Connection between the physical model and the corresponding virtual model or virtual”

* "connection is established by generating real time data using sensors"

Application examples for future oriented maintenance

 Digital model: "Virtual representation of a system"
 Digital shadow: "Usage of real-time data"

 Digital twin: "Feedback-loop between virtual andreal system"

[R. Glawar: "Maintenance trends and tools in the age of digitalization", » Digital Model = Virtual fepresensation of & System

VGB Workshop Digitalization in Hydropower, 12 April 2018, Vienna] g pro it ol A0

“ }{qIE Verbund % Fraunhofer



Reality: mixed/augmented, virtual and

simulated
TE

e

* Mixed and augmented: Combination of £55

55 £

computer generated and true reality 38

* Virtual: Computer generated £5

 Simulated: Computer generated/virtual $32
2 > o

reality indistinguishable from "true" £z
reality gua
(9 SINTEF
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Types of maintenance

Predictive maintenance
is a subset of preventive
and condition-based
maintenance

|

=
|-—

26 based on EN 13306:2010 and :2017

predic! (9 SINTEF
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Types of maintenance — Other definitions
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