

Digitalization

To digitize The proces

2

The process of converting analogue to digital data

Digitalization

The process when an organization digitizes central parts of its business

Digital transformation

The effect of digitalization on an organization. New value chains and services.

Bild 2

Replace shutterstuck picture Lukas Bach; 2018-09-16 LB1

LB2 Hvad er historien her?

Lukas Bach; 2018-09-16

nye forretningsmodeller, papiravis til nettavis, rubrikka nnonser til finn.no Anne Marthine Rustad; 2018-09-16 AMR1

Digitalization

There is no digitalization and no digital transformation without digitization (of paper and processes)

Digitalization leads to digital business, digital transformation requires digital business and digitization

https://www.i-scoop.eu/digitization-digitalization-digital-transformation-disruption/

Digitization

"Digitization is creating a digital (bits and bytes) version of analog/physical things such as paper documents, microfilm images, photographs, sounds and more. So, it's simply converting and/or representing something non-digital (other examples include signals, health records, location data, identity cards, etc.) into a digital format which then can be used by a computing system for numerous possible reasons."

Digitalization

 "Enabling, improving and/or transforming business operations and/or business functions and/or business models/processes and/or activities, by leveraging digital technologies and a broader use and context of digitized data, turned into actionable, knowledge, with a specific benefit in mind."

• Digital transformation

• "Digital transformation [...] is broader than digitalization as a way to move to digital business."

[https://www.ibmbigdatahub.com/infographic/four-vs-big-data]

Big data – the 5 "V"s

- Volume: the vast amount of data
- Velocity: the speed at which new data is generated and the speed at which data moves around
- Value: the ability to use the data to generate value
- **Veracity**: the messiness or trustworthiness of the data

CPS, IoT, IoS

- Cyber-physical system (CPS)
 - "Cyber-Physical Systems (CPS) comprise interacting digital, analog, physical, and human components engineered for function through integrated physics and logic. [...]" [National Institute of Standards and Technology (NIST), U.S. Department of Commerce]
 - "Cyber-Physical Systems (CPS) are integrations of computation, networking, and physical processes." [https://ptolemy.berkeley.edu/projects/cps/]
- Internet of things (IoT)
 - "Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects." [https://en.wikipedia.org/wiki/Internet of things]
- Internet of Services (IoS)
 - Access to services available on the web

Soon, IoT will transition into Internet of Service

http://cyberphysicalsystems.org

Framework for data-driven predictive maintenance

Where can concepts like cyber-physical systems (CPS), internet of things (IOT), data mining (DM) and internet of services (IOS) be used for predictive maintenance of hydropower plants?

Data mining

- Data mining
 - "Process of discovering patterns in large data sets"
 [https://en.wikipedia.org/wiki/Data_mining]
 - Analyse large amount of data and generate new information

Type of models (model classes)

Physical models (PM)

Stochastic models (SM)

Machine learning (ML)

PM	SL	ML
+ White-box model	+ General model	+ General model
 + Clear meaning of model parameters - Problem-specific model - Challenging if good model is not available 	 + Takes uncertainty into account + Requires a group consisting of comparable items - Parameter estimation requires observations related to lifetime/reliability 	 + Large data sets + Short-term predictions + Identification of faults + Fault prediction and diagnosis - Often black-box model - Requirements of quality data - Few examples on lifetime prediction and reliability
		estimation

PM	SL	ML
+ White-box model	+ General model	+ General model
+ Clear meaning of model parameters	+ Takes uncertainty into account	+ Large data sets + Short-term predictions
- Problem-specific model - Ch ma	 + Requires a group consisting of comparable items - Parameter estimation requires observations related to lifetime/reliability 	 + Identification of faults + Fault prediction and diagnosis - Often black-box model - Requirements of quality data - Few examples on lifetime prediction and reliability estimation

Drop it!

PM	SL	ML
+ White-box model	+ General model	+ General model
+ Clear meaning of model	+ Takes uncertainty into	+ Large data sets
parameters	account	+ Short-term predictions
- Problem-specific model	+ Requires a group	+ Identification of faults
- Ch	consisting of companible	+ Fault prediction and diagnosis
m	- Pa	- Often black-box model
	re	- Requirements of quality data
	re	- Few examples on lifetime
	life	prediction and reliability
		estimation

Drop it!

And again!

PM	SL	ML
+ White-box model	+ General model	+ General model
+ Clear meaning of model	+ Takes uncertainty into	+ Large data sets
parameters	account	+ Short-term predictions
- Problem-specific model	+ Requires a group	+ Identification of faults
- Ch	consisting of companible ite	+ Fault prediction and diagnosis
m	- Pa	- Often black-box model
	re	- Requirements of quality data
	re	- Few examples on lifetime
	lif	prediction and reliability
		estimation

Drop it!

And again!

And again!

••••

 $P_{dest}=...$

Al is a crossroad of multiple fields...

.. and there are several types of Al

- Computer science
- Mathematics
 - Logics
 - Optimisation
 - Analysis
 - Probabilities
 - Linear algebra
- Cognitive sciences
- •
- Domain expertise

AI - Machine learning - Deep learning

Artificial Intelligence (AI)

 A program that can sense, decide, act and adapt

Machine Learning

- A way of achieving Al
- Algorithms whose performance improve as they are exposed to more data

Deep Learning

- Subset of machine learning
- Multi-layered neural networks learn from vast amounts of data

Machine learning

All machine learning have a two step approach:

- Learning phase: Using input data to identify parameters best describing task at hand
- 2. Inference phase: Take learned parameters as input to perform task

Main types of machine learning

SUPERVISED LEARNING

Processing

- Trained to learn mapping from input to output
- Tagged training set

- Only given input
- No "correct" answer provided
- No tagged data

- Learning through trial and error with rewards and punishments
- Hybrid between supervised and unsupervised

SR2

I'm thinking something along these lines. Reinforcement learning can then be illustrated similarly to unsupervised, but with a reward whenever the ducks ends up in the same category, and e.g. get ducklings (delayed reward). Health example could be e.g. tumor/no tumor classification (supervised), tumor type clustering (unsupervised), and how will the tumor react to treatment? (Re-inforcement learning, delayed reward)

Signe Riemer-Sørensen; 2018-09-21

Digital twin

- Digital twin
 - "a digital replica of a living or non-living physical entity" [https://en.wikipedia.org/wiki/Digital_twin]
 - Properties:
 - "Connection between the physical model and the corresponding virtual model or virtual"
 - "connection is established by generating real time data using sensors"
- Digital model: "Virtual representation of a system"
- Digital shadow: "Usage of real-time data"
- Digital twin: "Feedback-loop between virtual andreal system"

[R. Glawar: "Maintenance trends and tools in the age of digitalization", VGB Workshop *Digitalization in Hydropower*, 12 April 2018, Vienna]

Reality: mixed/augmented, virtual and simulated

 Mixed and augmented: Combination of computer generated and true reality

Virtual: Computer generated

 Simulated: Computer generated/virtual reality indistinguishable from "true" reality

https://sv.wikipedia.org/wiki/F%C3%F rst%C3%A4rkt_verklighet#/media/File Navit_Reality_View_next_to_reality.jj

https://en.wikipedia.org/wiki/Virtu al_reality#/media/File:Reality_chec k_ESA384313.jpg

Types of maintenance

Types of maintenance – Other definitions

Teknologi for et bedre samfunn